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A complete anmalysis of the discrete mode spectrum of open microstrip transmission 1lires is presented. Proposing
a complete set of distribution functions for the longitudinal component of the current on the stripconductor,
the dispersion characteristics of the discrete modes are derived. The discrete modes have physical acceptable

and interesting properties.

Introduction

The open microstrip transmission line (fig.1) has
found widespread application in the development of
microwave integrated circuits. To a large extent,
however, this development has been empirical due to
the abscence of an exact theory for this open boun-
dary-value problem. Till now the modal analysis was
allways restricted to the fundamental mode or "kwasi-
T.E.M." model2.

In this paper we present a dynamical theory including

the fundamental mode as well as the modes of higher
order.
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FIGURE 1 OPEN MICROSTRIP

TRANSMISSION LINE

Dynamical theory

The basical idea of this theory are the general
principles formulated by G. Deschamps3 :
1. The longitudinal wavenumber t.has an eigenvalue
spectrum consisting of two sets :
- a fipite set of discrete eigenvalues leading to
a finite nurber of Aiscrete modes, ‘ncluding
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the fundamental mode ; :

- a continuous sequence of eicenvalues corresponding
to the radiation field.

2.The relative importance of the radiation field is
only to evaluate with respect to the way of ex-
citing the structure.

The discrete modes are no pure T.E. or T.M.-modes,
but are hybride modes. Therefore we formulate the
boundary-value problem applicating the Helmholtz
equation to the longitudinal field components :
2 2 -
V2 Ez + kZ.Ez =0
v Hz + k .HZ =0

k S WT.UH_eE S 1y d
a >
k S WS U _LE_WE S-O<\y<d.
=t

The longitudinal field components satisfy the follo-
wing boundary conditions at the plane v = O :
E (x,y=0,2)=0
Z
9 - -
é?y-HZ (X,y_o, z) = 0.

At the interface substrate-air the tangential field
components are continuous :

Exl B Exz

Ezl = EZ2

H21 - sz =L

H, -H =~1.,
X1 X2 V4

The subscript 1 is valid for the region v >d and the
subscript 2 for the substrate o<y<d. An equivalent,
but unknown, current distribution replaces the strip-
conductor :

I(x,v,2) = (1,(x) ‘_iz + Ix(x).—ix).é(y—d).exp(—jcz)
- _ for : [x]<w
I(x,v,2) = O for : |x|>w.

After a complex Fourier transformation of the real
space variable x to the complex variable £, we apply
the foregoing conditions to the field components.

The boundary conditions at the stripconductor :

EZ(X,Y=d, Z) =0 for lxlSW

Q _ -
5 Hz (x,y=3, 2z) = 0

only applicable in the real srace domain, result in a
set of two counled intesral eauations .



For each eipenvalue of the longitudinal wavenumber
¢, there is a corresponding pair of current distri-
bution funections I, (x) and I, (x). These functions

satisfy the couple of integral equations, while the
value of ¢ is given by the integral eigenvalue
equation :

[é::,xl,x'Ix(E)' exp(~j£x) .4E.
+oo .
éz-mKQ,Z.IZ(C). exp(-jmx).dc ] _

400 .
{f X, ,X.Ix(g) . exp(-jEx).dE.

g:—co "
I K LT, exp(~§£%).d¢ | = 0.

EZww
The functions I, (&) and I, (&) are the Fourier
transforms of the unknown current components IZ (x)
and T, (x).

A complete solution should give an infinite set of
possible discrete surface-wave modes, of which only
a finite number occur in the field representation for
a given frequency.

We introduce a classification of these discrete modes
in even and odd modes in correspondence with the
even or odd character of Iz(x). The modes are

indicated with the symbol EH . The subscript n is
the order of the mode and will be equal to the num—
ber of zeros of IZ(X).

Current distribution functions

Untill now all investigators!:2 suppose a current
distribution function or use a numerical method,
based upon Galerkin's procedure in the spectral
domain*, to solve this eigenvalue problem. These
studies have been limited to the fundamental or
EHO-mode.

In this contribution we determine the propagation
characteristics of the fundamental mode as well as
the higher order modes, proposing a complete set of
current distribution functions for the longitudinal
component IZ(X) (fig. 2 & 3). The derivation of this

set of functions has been based on the Maxwell dis-
tribution function for the charge on an isolated con-
ducting strip :

[+
6 (%) == . f (%)
ki}

with
f (%)

a- (5)2)—1/2 for : x| ¢ w

=0
The current

for : |x| > w.

distribution function :

I
z
o}

(x) = I .f

L]

proposed by Denlinger! for the fundamental mode, gives
results very good in agreement with experiments.

The Fourier transform of £ (x) is a zero order Bessel
function of the first kind.
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FIGURE 2 :

FIGURE.

LONGITUDINAL CURRENT
DISTRIBUTION FUNCTION
FOR THE EHg, EH,,EH,-MODE

I (X))
o
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3: LONG'ITUD'I‘NAL CURRENT
DISTRIBUTION FUNCTION FOR
THE EH, , EH3,EHg-MODE .



We propose a complete set, consisting of the inverse
Fourier transform of the hicher order Bessel functions
(fig.2 & 3) as current distribution functions for the
discrete modes of higher order :

L, =1, . 2.

L, 6= 1, .[1-2 &S], £ o

LICOIES S [3 - s ] £ oo

g @ = T, [1-8®7re®" oo
L, (0= 1, . [5G - 20+ 16 ]. £ o0

The transversal current component IX (x) is assumed

to be identically zero, since its magnitude is one
ord?r smaller than the magnitude of the longitudinal
onel,

Discrete Mode Characteristics

For the fundamental mode, the numerical results are
in very good agreement with the experiments of
Denlinger!. The phase velocity as a function of the
freauency is accuvate to within 0.2 % (fig.u).
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FIGURE 4 : DISPERSION CHARACTIRISTIC
OF EHp MODE
(1 )THEORETICAL RESULTS
(2)EXPERIMENTS !

The proposed current distribution functions of
higher order give convergent eigenvalues for the
longitudinal wavenumber r. This eicenvalue has been
calculated in function of the frequency. Fig. 5
shows the corresponding value of the effective rela-
tive permittivity, determined by the relation :

E, =

g2
r
eff wz-uooeo

for the first four modes.
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Analysing the dispersion characteristics of the
discrete mode spectrum, a number of interesting pro-
perties can be deduced. For the fundamental mode
or EHO-mode, we have a convergent eigenvalue for the

longitudinal wavenumber r starting from frequency
zero. For the higher order modes, however, a lowest
cut-off frequency has been found. The value of this
cut-off frequency increases with the order of the
mode. Below its cut-off frequency the discrete mode
in question does not longer exist, while the energy
excited in this mode is not longer guided along the
microstripline but radiatedS. Above its cut-off
frequency, a higher order mode propagates with a
phase velocity greater than the phase velocity of
each mode of lower order at the same frequency. For
increasing frequencies the phase velocity has a lower
1imit, with a value equal to the phase velocity in
the dielectric medium of the substrate.
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