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A complete analysis of the discret emode spectrum of open micrcxstrip transmission lines is presented. FiqcxSng
a complete set of distribution functions for the Iongitudiml compnent of the current on the stripconductor,
the dispersion characteristics of the discrete modes are derived. The discrete modes have phvsical acceptable
and interesting properties.

Irrtmduction

The o@nmicmstrip ln3ansmission line (fig,’f?) has
found widespread appl&rtion in the development of
microwave integrated circuits. To a large extent.
hcwever, this dwelopnent has been empirical due to
the abscence of an exact theory for this ocen bcun-
dary-value problem. Till now the medal analysis was
allways restricted to the fundamental nmde or “kwasi-
T.E.M.” mode112.

In this paper we present a dynamical theory includinp
the fundamental mode as well as the mcdes of higher
order .
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_~amkal theory

The basical idea of this theory are the qeneral
principles formulated by G. Ikschamps3 :
1. The lon~itudinal wavenx c.has an eigenvalue

spectrum consisting of two sets :
- a finite set of discrete eigenvalUes leading to

a fintte number of ?S.screte moa~%, ‘rvlLv++=-
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the fundamental tie ;
- a continuous sewence of eiqenvalues corrqmnding

to the radiation field.
2.The relative importance of the radiation field is

only to evaluate with respect to the way of ex-
citin~ the structure.

The discrete @es are no pure T.E. or T.M.-modes,
but are hybride ?ncxks. T&refore we for!rulate the

boundary-value problem applica~ing the Helmholtz
equationto the Ionqitudinal field crxnponents :

V2 Ez + k2.Ez = O

V2 Hz + k2.Hz = O

with :

k2 = W2. po. Co as : y>d

1# = Wz.po.co.cr as : ()<y<d.

The longitudinal field ccnrponents satisfy the follo-
wing boundary conditions at the plane y = O :

Ez(x,y=O, z),O

~H(x,v=O,z)=O.
ay z

At the interface substrate-air the tangential field
components are continuous :
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The subscript 1 is valid for the reg<on v>d and the
subscriut 2 for the substrate osy<d. An equivalent,
but unknown, current distribution replaces the strip-
conductor :

~(x,Y,z) = (IZ(X).IZ + Ix(x).Ix).6(v-d).exp(-jCz)

for : IXl<w
7(x,y, z) = 6 for : Ix[>w.

After a ccmplex Fourier transformation of the real
space variable x to the comDlex variable E, we apply
the foregoinp conditions to the field comrnnents.

The boundary conditions at the stripconductor :

Ez(x,v=d, Z) = O

}

for Ixlgw

&z (X,y=ti, z) ❑ o

onlv amlicahle ~n the real snace domain, result in a
set of two counle5 internal eauations .
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For each eigenvalue of the longitudinal wavenumber
~, there is a corresponding mir of current d&ri-
bution functions Iz (x) and Ix (x). These functions

sat isfi the couple of irtegral equations, while the
value of c is given by the integral eigenvalue
equation :

[gm%,x%(~)”

[

+CO
I (E).r ‘2,x” x

c’--

The functions 1.

exd-jcx). dc.

exp(-j~x).d~.

f+@~,z. Iz(c). exp(-jgx).d~]=

E’--

~ (E) and IX (E) arethe Four&?r

transforms of the unknown current ccqmnents Iz
and IX (x).

o.

(x)

A complete solution should give an infinite set of
pxxd.ble discrete surface-wave nules, of which only
a finite nunber occur in the field representation for
a given frequency.

We introduce a classification of these discrete modes
in even and odd males in co??res~ndence with the
even or odd character of Iz(x). The males are

ind&ated with the symbol EHn. The SubScFi@ n is

the order of the mode and will be equal to the num-
berof Z~S of Iz(x).

Current distri.butkm functions..—

Untill now all investigators 1,2 sup~se a current
distribution function or use a numerical method,
based u~n Galerkints procedure in the spectral
dcnnain4, to solve this eigenvalue problem. These
studies have been limited to the fundamental or
EHo-mode.

In this contribution we detemine the propagation

characterktics of the fundamental mcde as well as

the higher order @es, prqosing a complete set of
current distribtiion functions for the longitudinal
ccmpnent 12(x) (fiR. 2 & 3). The derivathn of this

set of functions has been based on the P&well dis-
tribution function for the charge on an isolated con-
ducting strip :

a
U(x) =:.f(x)

with
f (x) = (1 - (;)W for: Ixl< w

=0 for : lx! >W.

The current distribution function :

Iz (x) = I f (x)
o

z.
o

pqnsed bv DenlinPerl for the fundamental mode, gives
~5ults ~ good in agreement with experiments.

The Fourier transform of f (x) is a zem order Bessel.
functionofthe first kind.
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We Drqmse a complete set, consisting of the inverse
Fourier transfom of the hiqher order Bessel functions
(fip.2 & 3) as current distribution functions for the
discrete modes of hipher orrler :

I ~1 (x) = Tzl . ~ . f(x)
w

I
[

~2(x)=172.1- 2 (;)2]. f (x)

I ~a (x) = IZ3 . [3(:) - 4(:)3]. f (x)

I ~q (x) ❑ TZ4
o P - ‘(:’2 + ‘%)4 1 f ‘x)

I
[Z5 (x) = IZ5 . 5(;) - ?0(;)3 + 16(;)5]. f (X)

The transversal current component Ix (x) is assumed

to be identically zero, since its nwnitude is one
ofi~ sndler than the nwnitude of -the longitudiml
one i.

Discn=ete Mode characteri~tics..-..—.—..

For *he fundamental. mude, the nwnerical results
in very pod apreement with the experiments of
~nlin~e~l. T& phase velocity as a fUnCtiOn of

freauency is acvmmate to within 0.2 % (fig.4).
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(l)THEORETiCAL RESULTS

[2)EXPERIMENTS 1

The prqmsed curpa-rt distribution functions of
higher order give convergent eigenvalues for the
longitudinal wavenumber C. This eiqenvalue has been
calculated in function of the frequency. Fig. 5
shows the corres~ndin~ value of the effective rela-
tive pennittivity, determined by the relation :

c’
‘reff =

U#.llo.co

AnalvsinQ the dispersion characteristics of the
discrete rode spectrum, a number of interesting pm-
Perties can be deduced. For the fundamental mode
or EHo-mode, we have a convergent eigenvalue for the

longitudinal wavenumber < starting from frequency
zero. For the higher order rrcdes, however, a lowest
cut-off frequency has been found. The value of this
cut-off frequency increases with the order of the
mode. Below its cut-off frequency the discrete mcde
in auestion does not longer exist, while the eneqgy
excited in this tie is not longer guided along the
mic?mstrinline but radi.ateds. Above its cut-off
frea,uency, a higher order rode propagates with a
phase velccity greater than the ~hase velccity of
each mode of lower order at the same frequency. F=
increasing frequencies the phase velocity has a lower
limit, with a value equal to the phase veloci’ty in
the dielectric medium of the substrate.
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